
Introduction Algorithm Experiments Conclusions References

Parallel Semiparametric Support Vector Machines 1

Roberto Dı́az-Morales, Harold Y. Molina-Bulla
and Ángel Navia-Vázquez

{rdiazm,h.molina,navia}@tsc.uc3m.es

University Carlos III de Madrid
Deparment of Signal Theory and Comunications

August, 2011

1This work has been supported by CICYT grant TEC2008/02473.

Introduction Algorithm Experiments Conclusions References

Contenido

1 Introduction
SVMs
Parallelization

2 Algorithm
SGMA
IRWLS

3 Experiments

4 Conclusions

5 References

Introduction Algorithm Experiments Conclusions References

Support Vector Machines

Kernel methods have become very popular in the machine learning.

Support Vector Machines (SVMs)are considered the ”state-of-art” to
solve classification problems:

Performance working with high dimensional data.

Ability to adjust the machine size once its hyperparameters are set.

Classifier size usually results very high − > Computational cost.

Some methods propose to reduce the machine size growing up a
semiparametric model.

The complexity is kept under control.

Good ratio of complexity and performance.

Introduction Algorithm Experiments Conclusions References

Parallelization

In recent years the number of cores in computers has increased
considerably.

New programming interfaces, as OpenMP, have emerged that supports
multiplatform shared memory multiprocessing programming.

New research lines to adapt classical techniques of machine learning to
a parallel scenario.

In this work we derive a new method to train semiparametric SVMs
based on SGMA and Iterated Re-Weighted Least Squares (IRWLS).

Introduction Algorithm Experiments Conclusions References

SGMA

A kernel evaluation k(xi, .) can be approximated as a linear
combination of other kernels k(x1, .),...,k(xn, .) with n base elements.

SGMA identifies the elements of the training set {x1,...,xm} whose
projections represent accurately the support vectors.

The approximation error once the weights αij are chosen is then:
Err(α) = trK −

∑m

i=1

∑n

i=1 αi,jKi,j

Adding a new base element cn+1 the new error can be exoressed as a
function of the previous error:2

Err(αm,n+1) = Err(αm,n)− η−1||Km,nz− kSm||2

This algorithm choose iteratively a new base element comparing de
error descendant of a group of candidates.

2
z = K

−1

C
· kmC and η = 1 − z

T
KmCz

Introduction Algorithm Experiments Conclusions References

SGMA-Simulation

Boundary regions in function of the number of base elements.

Introduction Algorithm Experiments Conclusions References

SGMA - Parallelization

Training Set
Random selection

of M candidates

{X1,...,XN} {X1,...,XM}

ED1

ED2

EDM

X1

X2

XM

ED1

ED2

EDM

MAX ED

Matrix of kernels

updating

Introduction Algorithm Experiments Conclusions References

SGMA - Parallelization

Products of matrices and vector, easily parallelizable distributing the
rows of the matrix result among the number of cores.

For the matrix updating K−1
C , the block matrix inversion is used:

KC+1 =

(

KC kmC

kT
mC 1

)

K
−1
C+1 =

(

K−1
C +K−1

C kT
mCkmCK−1

C − 1
k
K−1

C kmC

− 1
k
kT
mCK−1

C 1

)

k = 1− k
T
mCK

−1
C kmC

Introduction Algorithm Experiments Conclusions References

IRWLS-Algoritmo

This algorithm calculate the optimal weights of the semiparametric
SVM.

It consists of formulating the SVM training problem as a Weighted
Least Squares one and repeating iteratively until the convergence the
weights updating and LS solving.

We have P trining data and R base elements selected using SGMA.

Step 0: Initialization
ai = 1, ∀ i=1,...,P
(KSC)i,j = k(xi, cj); i=1,...,P; j=1,...,R
(KC)i,j = k(ci, cj); i=1,...,R; j=1,...,R
(Da)i = ai; i=1,...,P
1 = [1, ..., 1]T

y = [y1, ..., yp]
T

Introduction Algorithm Experiments Conclusions References

IRWLS-Algoritmo

Step 1: Obtain optimal weights and bias

K1 =

(

KT
SCDaKSC +KC KT

SCDa1

1TDaKSC 1Da1

)

K2 =

(

KT
SCDay

1Day

)

(

β
b

)

= (K−1
1 K2)

Step 2: Compute errors
o(xi) =

∑R

r=1 βik(xi, cr)
ei = yi − o(xi)

Introduction Algorithm Experiments Conclusions References

IRWLS-Algoritmo

Step 3: Update Weighting values

ai =

0 si eiyi < 0
M si 0 < eiyi <

C
M
;M = 109

c
eiyi

si eiyi >
C
M

Step 4: Evaluate convergence

{

||β(k+ 1)− β(k)||2 + ||b(k+ 1)− b(k)||2 <= 10−3 Stop
||β(k+ 1)− β(k)||2 + ||b(k+ 1)− b(k)||2 > 10−3 Go to step 1

Introduction Algorithm Experiments Conclusions References

IRWLS-Parallelization

Step 1: This step has the highest computational cost O(R2P), P >> R.
To obtain K1 and K2 the different rows to be obtained were divided
among the cores.
The parallel inversion of K1 has been done with the block matrix
pseudoinversion:

(

A B
C D

)

−1

=

(

(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)
−1 (D − CA−1B)−1

)

−1

Computational cost of matrix inversion is R3, each subtask do 5
operations of cost (R/2)3, that represents 5/8 of the complete inversion.
This efficiency loss has been partially solved using LU inversion and
back substitution, it is possible to implement operations like A−1B
with the same computational cost than A−1.

Steps 2 y 3: These steps have also been parallelized dividing the
training data set among the cores to evaluate their errors and
weighting values.

Introduction Algorithm Experiments Conclusions References

Experiments

This algorithm has been implemented in C using the programming
interface OpenMP to parallelize its execution.

It has been evaluated against the unreduced machines obtained with
the library LIBSVM 2.91.

Both algorithms are executed on a Sun X4150 server with eight cores.

To evaluate the parallelization quality two criteria have been used:
Speedup = Serial Run Time

Parallel Run Time

Efficiency = Speedup

Number of cores

Introduction Algorithm Experiments Conclusions References

Experiment 1

UCI Adult data set: 32561 patterns with 123 binary attributes.
Gaussian kernel with γ = 0,5 and C = 100.

Algorithm
LibSVM PSSVM PSSVM PSSVM PSSVM

1 Core 2 Cores 4 Cores 8 Cores
SGMA(ms) 210048 105020 60158 31657
IRWLS(ms) 303768 151890 79100 40390
Run time(ms) 542564 513816 256910 139258 71047
Machine size 19059 126 126 126 126
Accuracy(%) 82,69 82,87 82,87 82,87 82,87

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Processors

S
pe

ed
up

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Processors

E
ffi

ci
en

cy

OpenMP
Ideal

Introduction Algorithm Experiments Conclusions References

Experiment 2

Web data set: 24692 patterns with 300 attributes. Gaussian kernel with
γ = 7,8125 and C = 64.

Algorithm
LibSVM PSSVM PSSVM PSSVM PSSVM

1 Core 2 Cores 4 Cores 8 Cores
SGMA(ms) 131186 69584 38828 21686
IRWLS(ms) 42307 22344 11637 6040
Run time(ms) 566994 173493 105334 57447 27726
Machine size 16781 85 85 85 85
Accuracy(%) 97.57 97.67 97.67 97.67 97.67

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Processors

S
pe

ed
up

OpenMP
Ideal

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Processors

E
ffi

ci
en

cy

Introduction Algorithm Experiments Conclusions References

Experiment 3

USPS data set: 7291 handwritten digits for training and 2007 for
testing with 784 attributes(each digit is a 27x28 image). In this
experiment we have classified odd digits vs even digits. Gaussian kernel
with γ =1/256 and C = 10.

Algorithm
LibSVM PSSVM PSSVM PSSVM PSSVM

1 Core 2 Cores 4 Cores 8 Cores
SGMA(ms) 20229 10517 5718 3706
IRWLS(ms) 84206 48114 26254 13541
Run time(ms) 9351 104436 58631 31972 17247
Machine size 684 200 200 200 200
Accuracy(%) 97,06 96,31 96,31 96,31 96,31

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Processors

S
pe

ed
up

OpenMP
Ideal

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Processors

S
pe

ed
up

OpenMP
Ideal

Introduction Algorithm Experiments Conclusions References

Ideal environment 1-32 processors

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Processors

E
ffi

ci
en

cy

ADULT
USPS
WEB

Introduction Algorithm Experiments Conclusions References

Experiment 4

MNIST data set: 6000 patterns for training and 1000 for testing with
576 attributes. Gaussian kernel with γ = 0,125 and C = 10. Ten
classifiers one-versus-all.

CLASS
LibSVM PSSVM PSSVM PSSVM PSSVM

(1 Core) (2 Cores) (4 Cores) (8 Cores)
0 17551 10239 5637 2813 1553
1 8532 10234 5620 2958 1559
2 16820 10342 5641 2970 1565
3 16450 10244 5655 2978 1549
4 17398 10212 5648 2940 1566
5 17756 10346 5525 3031 1549
6 15760 10332 5595 3077 1554
7 16166 10242 5640 3070 1561
8 17121 10361 5687 3090 1558
9 17225 10361 5625 3068 1557

Average 16078 10291 5627 2999 1557

CLASS
LIBSVM PSSVM LIBSVM PSSVM

Size Size Accuracy(%) Accuracy(%)
0 40361 378 97.01 97.40
1 35282 378 99.74 99.49
2 40890 378 94.47 94.59
3 41818 378 96.20 96.55
4 41816 378 97.12 97.21
5 41292 378 96.04 94.29
6 40130 378 97.28 96.31
7 41236 378 97.98 97.54
8 42186 378 95.12 95.33
9 42672 378 97.80 95.82

Average 40768 378 96.88 96.46

Introduction Algorithm Experiments Conclusions References

Experiment 4

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

Processors

S
pe

ed
up

Average
Average+2*Std
Average−2*Std

1 2 3 4 5 6 7 8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Processors
E

ffi
ci

en
cy

Average
Average+2*Std
Average−2*Std

Introduction Algorithm Experiments Conclusions References

Conclusions

A parallel training algorithm for semiparametric support vector
machines (PSSVM) has been proposed. Using quadtrees for the
parallelization of matrix inversion, dividing the tasks among different
processors.

The efficiency of using muttiples cores on a machine because it allows a
speedup close to the number of cores.

Amdhal law says that the speedup is equal to 1/((1-P)+P/N), where P
is the proportion of a program that can be made parallel and N the
number of cores. This effect can be observed on the results, the slope of
speedup decreases increasing the number of processors.

As future research lines we propose to apply these parallelization
techniques to other machine learning algorithms based on kernel such
as Gaussian Processes, which represent a bigger scale schallenge
because they don’t naturally lead to sparse solutions as SVMs.

Introduction Algorithm Experiments Conclusions References

References

B. Schólkopf and A. Smola
Learning with kernels

Cambridge, MA: MIT Press, 2002.

V. Vapnik
The Nature of Statistical Learning Theory.

New York: Springer-Verlag, 1995.

E. Parrado-Hernández, J. Arenas-Garćıa, I. Mora-Jimenez, A.R.
Figueiras-Vidal, and A. Navia-Vázquez
Growing Support Vector Classifiers with Controlled Complexity.

Pattern Recognition, Vol. 36, no. 7, pp. 1479-1488,2003.

A. Navia-Vázquez
Compact Multiclass Support Vector Machines.

Neurocomputing, Vol. 71, No 1-3, pp.400-405, 2007.

Introduction Algorithm Experiments Conclusions References

Thank you for your attention.

	Introduction
	SVMs
	Parallelization

	Algorithm
	SGMA
	IRWLS

	Experiments
	Conclusions
	References

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	anm0:

