Parallel Semiparametric Support Vector Machines

Roberto Diaz-Morales, Harold Y. Molina-Bulla
and Angel Navia-Vézquez
{rdiazm,h.molina,navia}@tsc.uc3m.es

University Carlos III de Madrid
Deparment of Signal Theory and Comunications

August, 2011

I This work has been supported by CICYT grant TEC2008/02473.

© Introduction
@ SVMs
@ Parallelization

© Algorithm
¢ SGMA
o IRWLS

© Experiments
© Conclusions

© References

Introduction
L]

Support Vector Machines

9 Kernel methods have become very popular in the machine learning.
@ Support Vector Machines (SVMs)are considered the ”state-of-art” to
solve classification problems:
o Performance working with high dimensional data.
o Ability to adjust the machine size once its hyperparameters are set.

o Classifier size usually results very high — > Computational cost.

@ Some methods propose to reduce the machine size growing up a
semiparametric model.

@ The complexity is kept under control.

o Good ratio of complexity and performance.

Introduction
L]

Parallelization

@ In recent years the number of cores in computers has increased
considerably.

@ New programming interfaces, as OpenMP, have emerged that supports
multiplatform shared memory multiprocessing programming.

@ New research lines to adapt classical techniques of machine learning to
a parallel scenario.

@ In this work we derive a new method to train semiparametric SVMs
based on SGMA and Iterated Re-Weighted Least Squares (IRWLS).

Algorithm
[Jele]e]

@ A kernel evaluation k(z;,.) can be approximated as a linear
combination of other kernels k(z1,.),...,k(zn,.) with n base elements.

@ SGMA identifies the elements of the training set {z1,...,xn } whose
projections represent accurately the support vectors.

@ The approximation error once the weights «;; are chosen is then:
Err(a) =trK —> 7" S°" ;K

@ Adding a new base element c,+1 the new error can be exoressed as a
function of the previous error:>
Err(a™™) = Err(a™") — 77 Y|K™"2 — kgm||?

@ This algorithm choose iteratively a new base element comparing de
error descendant of a group of candidates.

2z = Kal kmc and n=1-— zTK ez

SGMA-Simulation

Boundary regions in function of the number of base elements.

1

0.5,

2 Base Elements

Algorithm
[e]e] o]

SGMA - Parallelization

Random selection

Training Set of M candidates

X1 ED;

MAX ED

Matrix of kernels
updating

[e]e]e}

- Parallelization

@ Products of matrices and vector, easily parallelizable distributing the
rows of the matrix result among the number of cores.

@ For the matrix updating Kal, the block matrix inversion is used:

K km
()

K=1 Ko' + Ko'kmckmcKg' —1Kg'kme
Gt 7\ —fkEhcKS! 1

kE=1-kmcKg 'kmc

IRWLS-Algoritmo

@ This algorithm calculate the optimal weights of the semiparametric
SVM.

9 It consists of formulating the SVM training problem as a Weighted
Least Squares one and repeating iteratively until the convergence the
weights updating and LS solving.

@ We have P trining data and R base elements selected using SGMA.

@ Step 0: Initialization
a; =1,V i=1,....P
(KSC)i,j = k(l’i,Cj); izl,...,P; J2177R
(Ke)ij = k(e cj); i=1,...,R; j=1,...,.R
(Da)i = Qj; 121,,13
1=11,..,17
y= [y17 "'7yP]T

@ Step 1: Obtain optimal weights and bias

K. — K&cDaKsc + Ko Ki3cDal
1=\ 1"Da.Ksc 1D.1

K2 — KgCDay
1D,y

(4)-wiw

@ Step 2: Compute errors
O(l‘l) = Zf:l Blk(x’u cr)

ei = yi — o(x:)

@ Step 3: Update Weighting values

0 si €Y < 0
a; = M si O<eiyi<%;M:109
si ey > %

€ilYi
@ Step 4: Evaluate convergence

{I\B(k+1)—B(k)\lz+llb(k+1)—b(k)llz <=10"" Stop
1Bk +1) — B(k)|l2+ |[b(k+1) = b(k)|[>10"" Go to step 1

IRWLS-Parallelization

a Step 1: This step has the highest computational cost O(R*P), P >> R.
To obtain K; and K» the different rows to be obtained were divided
among the cores.

The parallel inversion of K1 has been done with the block matrix

pseudoinversion:
A B\ ' ((A-BD'0)! —AT'B(D-CcAT'B)" \ 7!
C D “\ -D'C(A-BD'C),4 (D-cA'B)™*

Computational cost of matrix inversion is R®, each subtask do 5
operations of cost (R/2), that represents 5/8 of the complete inversion.
This efficiency loss has been partially solved using LU inversion and
back substitution, it is possible to implement operations like A™'B
with the same computational cost than A~!.

@ Steps 2 y 3: These steps have also been parallelized dividing the
training data set among the cores to evaluate their errors and
weighting values.

Experiments

Experiments

@ This algorithm has been implemented in C using the programming
interface OpenMP to parallelize its execution.

@ It has been evaluated against the unreduced machines obtained with
the library LIBSVM 2.91.

@ Both algorithms are executed on a Sun X4150 server with eight cores.

@ To evaluate the parallelization quality two criteria have been used:

__ Serial Run Time
Speedup - Parallsgl Rsn Time
: _ peedup
EH—iClenCy " Number of cores

Experiments

Experiment 1

@ UCI Adult data set: 32561 patterns with 123 binary attributes.
Gaussian kernel with v = 0,5 and C' = 100.

Aleorith LibSVM [PSSVM | PSSVM | PSSVM | PSSVM
gorithm 1 Core 2 Cores | 4 Cores | 8 Cores

SGMA (ms) 210048 105020 60158 31657
IRWLS(ms) 303768 151890 79100 40390
Run time(ms) 542564 513816 256910 139258 71047
Machine size 19059 126 126 126 126
Accuracy(%) 82,69 82,87 82,87 82,87 82,87

3 03 >N
| -)

iy

Processors Processors

Experiment 2

Experiments

@ Web data set: 24692 patterns with 300 attributes. Gaussian kernel with
v = 17,8125 and C = 64.

Aleorith LibSVM [PSSVM | PSSVM | PSSVM | PSSVM
gorithm 1 Core 2 Cores | 4 Cores | 8 Cores
SGMA (ms) 131186 69584 38828 21686
IRWLS(ms) 42307 22344 11637 6040
Run time(ms) 566994 173493 105334 57447 27726
Machine size 16781 85 85 85 85
Accuracy(%) 97.57 97.67 97.67 97.67 97.67

—e— OpenMP
7 —— Ideal

Efficiency

Processors

Processors

Experiments

Experiment 3

9 USPS data set: 7291 handwritten digits for training and 2007 for
testing with 784 attributes(each digit is a 27x28 image). In this
experiment we have classified odd digits vs even digits. Gaussian kernel
with v =1/256 and C = 10.

Aleorith LibSVM | PSSVM | PSSVM | PSSVM | PSSVM
gorithm 1 Core 2 Cores | 4 Cores | 8 Cores
SGMA (ms) 20229 10517 5718 3706
IRWLS(ms) 84206 48114 26254 13541
Run time(ms) 9351 104436 58631 31972 17247
Machine size 684 200 200 200 200
Accuracy(%) 97,06 96,31 96,31 96,31 96,31
: S
0.1 %’%ﬁ

Processors Processors

Ideal environment 1-32 proces

Efficiency

Experiments

S0T'S

0.7

0.6

0.5

0.4

0.3

0.2

0.1

—>— ADULT
—6— USPS
—+— WEB

.
15
Processors

20

25

30

Experiments

eriment 4

@ MNIST data set: 6000 patterns for training and 1000 for testing with
576 attributes. Gaussian kernel with v = 0,125 and C' = 10. Ten
classifiers one-versus-all.

CLASS LibSVM PSSVM PSSVM PSSVM PSSVM
(1 Core) (2 Cores) (4 Cores) (8 Cores)
0 17551 10239 5637 2813 1553
1 8532 10234 5620 2958 1559
2 16820 10342 5641 2970 1565
3 16450 10244 5655 2978 1549
4 17398 10212 5648 2940 1566
5 17756 10346 5525 3031 1549
6 15760 10332 5595 3077 1554
7 16166 10242 5640 3070 1561
8 17121 10361 5687 3090 1558
9 17225 10361 5625 3068 1557
Average 16078 10291 5627 2999 1557
CLASS LIBSVM PSSVM LIBSVM PSSVM

L Size Size Accuracy(%) Accuracy(%)

0 40361 378 97.01 97.40

1 35282 378 99.74 99.49

2 40890 378 94.47 94.59

3 41818 378 96.20 96.55

4 41816 378 97.12 97.21

5 41292 378 96.04 94.29

6 40130 378 97.28 96.31

7 41236 378 97.98 97.54

8 42186 378 95.12 95.33

9 42672 378 97.80 95.82

Average 40768 378 96.88 96.46

Experiments

periment 4

—o— Average
—— Average+2Std|
—+— Average-2'Std|

—o— Average
—— Average+2Std|
—+— Average-2'Std|

Processors Processors

@ A parallel training algorithm for semiparametric support vector
machines (PSSVM) has been proposed. Using quadtrees for the
parallelization of matrix inversion, dividing the tasks among different

processors.

@ The efficiency of using muttiples cores on a machine because it allows a
speedup close to the number of cores.

@ Amdhal law says that the speedup is equal to 1/((1-P)+P/N), where P
is the proportion of a program that can be made parallel and N the
number of cores. This effect can be observed on the results, the slope of
speedup decreases increasing the number of processors.

@ As future research lines we propose to apply these parallelization
techniques to other machine learning algorithms based on kernel such
as Gaussian Processes, which represent a bigger scale schallenge
because they don’t naturally lead to sparse solutions as SVMs.

[B. Schélkopf and A. Smola
Learning with kernels
Cambridge, MA: MIT Press, 2002.

@ V. Vapnik
The Nature of Statistical Learning Theory.
New York: Springer-Verlag, 1995.

@ E. Parrado-Hernandez, J. Arenas-Garcia, I. Mora-Jimenez, A.R.
Figueiras-Vidal, and A. Navia-Vazquez
Growing Support Vector Classifiers with Controlled Complexity.
Pattern Recognition, Vol. 36, no. 7, pp. 1479-1488,2003.

@ A. Navia-Vazquez
Compact Multiclass Support Vector Machines.
Neurocomputing, Vol. 71, No 1-3, pp.400-405, 2007.

@ Thank you for your attention.

	Introduction
	SVMs
	Parallelization

	Algorithm
	SGMA
	IRWLS

	Experiments
	Conclusions
	References

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	anm0:

